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Analysis

In order to obtain analytic expressions, we chose, among the plethora of possible updating rules

governing the transmission of strategies, a specific stochastic process. There are many candi-

dates. For instance, with ’imitate the better’, two players are chosen at random and the one

with the lower payoff adopts the strategy of the player with the higher payoff. With the ’propor-

tional imitation’ rule, the player with the lower payoff adopts the strategy of the more successful

player, with a probability proportional to the payoff difference. For our analysis, we adopt what

is known as the frequency dependent Moran process (1, 2): each individual updates by imitating

a player who is selected with a probability proportional to its ’fitness’. We define each players’

fitness as 1− s+ sP , the convex combination of the ’baseline fitness’, which is normalised to 1

for all players, and the payoff P from the optional public goods game with punishment. The rel-
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ative importance of the two components is determined by s. We shall assume that occasionally,

each player can change strategy by imitating a player chosen with a probability proportional to

that player’s fitness. This mimics a learning process similar to the Moran process describing

natural selection: more successful players are more likely to be copied. In addition, we shall

assume that with a small probability µ, a player can switch to another strategy irrespective of

its payoff (this ’mutation term’ corresponds to blindly experimenting with anything different).

The analysis of the corresponding stochastic dynamics is greatly simplified in the limiting

case µ → 0. The population consists almost always of one or two types at most. This holds

because for µ = 0 the four monomorphic states are absorbing, and for sufficiently small µ

the fate of a mutant (i.e. its elimination or fixation) is settled before the next mutant appears.

Thus the transitions between the four pure states - cooperators, defectors, non-participants and

punishers - occur when a mutant appears and spreads to fixation (3).

In finite populations, the groups engaging in a joint effort game are given by multivariate

hypergeometric sampling. For transitions between two pure states, this reduces to sampling

(without replacement) from a hypergeometric distribution. In a population of size M with mi

individuals of type i and mj = M −mi of type j, the probability to select k individuals of type

i and N − k individuals of type j in N trials is

H(k,N,mi, M) =

(
mi

k

)(
M−mi

N−k

)(
M
N

) . (1)

Thus, in a population of x cooperators and y = M − x defectors, the average payoffs to coop-

erators Pxy and defectors Pyx are

Pxy =
N−1∑
k=0

H(k,N − 1, x− 1, M − 1)

(
k + 1

N
r − 1

)
=

r

N

(
1 + (x− 1)

N − 1

M − 1

)
− 1

Pyx =
N−1∑
k=0

H(k,N − 1, x, M − 1)

(
k

N
r

)
=

r(N − 1)

N(M − 1)
x.

Similarly, the payoffs Pij of strategy type i competing against type j for the other possible
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pairings are

Pzx = Pzy = σ

Pxz = Pwz = r − 1−
(

z
N−1

)(
M−1
N−1

)(r − 1− σ)

Pyz =

(
z

N−1

)(
M−1
N−1

)σ

Pxw = Pwx = r − 1

Pyw =
(N − 1)(r −Nβ)

N(M − 1)
w

Pwy =
r

N
− 1− γ(N − 1) +

(N − 1)(r + Nγ)
N(M − 1)

(w − 1)

Pzw = σ − N − 1
M − 1

δβw

Pwz = r − 1−
(

z
N−1

)(
M−1
N−1

)(r − 1− σ)− N − 1
M − 1

δγz

The fitness of an individual of type i in a mixed population of types i and j is then given by

1 − s + sPij . Since the fitness has to be positive, there is an upper limit on the intensity of

selection s given by smax = 1/(1−min Pij) for all strategic types i, j under consideration. The

above payoffs together with s determine the probability to change the number of individuals mi

of type i by ±1, T±ij :

T+
ij =

mi(1− s + sPij)

M(1− s) + s(miPij + (M −mi)Pji)

M −mi

M
(2a)

T−ij =
(M −mi)(1− s + sPji)

M(1− s) + s(miPij + (M −mi)Pji)

mi

M
(2b)

From these transition probabilities, the fixation probability ρij of a single mutant strategy of

type i in a resident population of type j can be derived (2, 4):

ρij =
1

M−1∑
k=0

k∏
mi=1

T−ij
T+

ij

=
1

M−1∑
k=0

k∏
mi=1

1− s + sPji

1− s + sPij

(3)

Finally, the fixation probabilities ρij define the transition probabilities of a Markov process

between the four different homogeneous states of the population. The transition matrix A is
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given by:

A=


1−ρyx−ρzx−ρwx ρxy ρxz ρxw

ρyx 1−ρxy−ρzy−ρwy ρyz ρyw

ρzx ρzy 1−ρxz−ρyz−ρwz ρzw

ρwx ρwy ρwz 1−ρxw−ρyw−ρzw

 (4)

The normalized right eigenvector to the largest eigenvalue (which is 1 for the matrix A) deter-

mines the stationary distribution, i.e. indicates the probability to find the system in one of the

four homogeneous states. It is given by

φ =
1
N




ρwyρwzρxw + ρwzρxyρxw + ρwyρxzρxw + ρxyρxzρxw + ρwyρyzρxw + ρxyρyzρxw

+ρwzρzyρxw + ρxzρzyρxw + ρwzρxyρyw + ρxyρxzρyw + ρxyρywρyz

+ρwyρxzρzw + ρxyρxzρzw + ρxyρyzρzw + ρxzρywρzy + ρxzρzwρzy




ρwxρwzρyw + ρwxρxzρyw + ρwzρyxρyw + ρxzρyxρyw + ρwxρyzρyw + ρyxρyzρyw

+ρwzρzxρyw + ρyzρzxρyw + ρwzρxwρyx + ρxwρxzρyx + ρxwρyxρyz

+ρxzρyxρzw + ρwxρyzρzw + ρyxρyzρzw + ρxwρyzρzx + ρyzρzwρzx




ρwxρwyρzw + ρwxρxyρzw + ρwyρyxρzw + ρwyρzxρzw + ρxyρzxρzw + ρwxρzyρzw

+ρyxρzyρzw + ρzxρzyρzw + ρwyρxwρzx + ρxwρxyρzx + ρxyρywρzx

+ρwxρywρzy + ρxwρyxρzy + ρywρyxρzy + ρxwρzxρzy + ρywρzxρzy




ρwxρwyρwz + ρwxρxyρwz + ρwyρyxρwz + ρwyρzxρwz + ρxyρzxρwz + ρwxρzyρwz

+ρyxρzyρwz + ρzxρzyρwz + ρwxρwyρxz + ρwxρxyρxz + ρwyρxzρyx

+ρwxρwyρyz + ρwxρxyρyz + ρwyρyxρyz + ρwyρyzρzx + ρwxρxzρzy





(5)

where the normalisation factor N has to be chosen such that the elements of φ sum up to one.

Fig. 1 and Fig. 2 show the evolution of the stationary distribution as a function of the selection

strength s.
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Figure 1: Punishment and abstaining in public goods games. For rare mutations, the dynamics

is restricted to transitions between the four homogeneous states consisting entirely of cooper-

ators (blue), defectors (red), non-participants (yellow) and punishers (green). All panels depict

the probabilities of each state as a function of the selection strength s < smax = 0.384 for

N = 5, r = 3, σ = 1, γ = 0.3, β = 1. In the limit of neutral evolution (s = 0), all states become

equally likely. a Punishers are clearly dominant in voluntary joint enterprises with punishment.

b The success of punishers is even more pronounced for larger population sizes. (continued)
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Figure 1 (continued): Individual-based simulation data confirms the analytical results for small

mutation rates (colored dots, µ = 0.001 a M = 100, sampling time T = 107, b M = 1000, T =

106). Whenever > 90% of the population opt for one strategy it is counted as being in the respec-

tive homogeneous state. The payoff determination, the mutation rate and the 90% threshold

are responsible for the systematic deviations but also illustrate the robustness of the model. c

Lowering the payoff of non-participants to σ = 0.1 (one tenth of σ in a,b) obviously reduces

the risk of the public goods game, i.e. encourages participation and hence supports defectors.

Nevertheless, punishers reign unchallenged. d Additionally, lowering the return of the joint

effort to r = 1.8 impedes both cooperators and punishers but punishers win (somewhat sur-

prisingly since in infinite populations, non-participants win and joint enterprises are abandoned

for r < 2).
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Figure 2: The role of non-participants and punishers in public goods games (all parameters

are identical to Fig. 1a). a Despite punishment, defectors reign in compulsory games except

for very weak selection. b In the absence of punishers, no strategy clearly dominates due to

the systems’ tendency to cycle between cooperators, defectors and non-participants. However,

the system spends significantly more time in the states with all cooperators or non-participants

than in the defector state.
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Fixation time of punishers

In the limit of rare mutations, the average time to reach the punisher state for the first time can

be derived analytically. This fixation time τi when starting in a pure state of i (which can be x,

y or z for cooperators, defectors, and non-participants, respectively) satisfies

τi = 1 +
∑

j=x,y,z

τj ·Rji, (6)

where the time τi is measured in updating periods (which consist of M individual update steps)

and Rji = δji + νj(Aji − δji) where Aji denotes the transition probability from pure state i

to pure state j (see Eq. 4), δji denotes the Kronecker symbol and νj denotes the rate at which

mutants of type j are produced. If all mutants are equally likely, this rate is simply νj = µM/3

(on average there are µM mutations per generation). Solving for τj leads to
τx

τy

τz

=
3

µM


ρyx + ρzx + ρwx −ρyx −ρzx

−ρxy ρxy + ρzy + ρwy −ρzy

−ρxz −ρyz ρxz + ρyz + ρwz


−1 

1

1

1

 . (7)

Thus, in the limit of rare mutations, the average waiting time to reach the punishment state

scales inversely with the mutation rate µ. According to numerical simulations, this relation still

holds for larger µ as shown in Fig. 3. However, for µ of the order 1/M or larger, pure states and

their close vicinity may no longer be accessible.

Note, that the fixation times follow an exponential distribution. Hence the average fixation

time equals its standard deviation and thus has limited predictive power for specific realizations.

In the limit of neutral selection (s = 0) the fixation time of punishers reduces to τx = τy = τz =

3/µ.
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Figure 3: Average waiting time τ to reach the punisher state when starting with all cooperators

(blue), defectors (red) or non-participants (yellow) as a function of the mutation rate µ. The lines

depict the analytical solution (see Eq. 10) for maximal selection strength. The symbols indicate

simulation results for different mutation rates µ. In order to determine whether the punisher

state has been reached, a threshold of 90% was used. Parameters: N = 5, r = 3, σ = 1, γ =

0.3, β = 1, α = 0,M = 100, s = 0.384.

Enforcing cooperation

Punishers can attempt to enforce cooperation through different means. In order to avoid second

order free-riding, punishers can punish cooperators who have failed to punish defectors (α > 0)

or they can enforce participation in the joint effort game by punishing the non-participants

(δ > 0). The very small effects of second order punishment (α > 0) are illustrated in Fig. 4.

Note that α does not enter the analytical approximation for the limit of vanishing µ. For larger

values of µ, it barely affects the simulation results.

For δ > 0 a new unstable equilibrium point appears along the non-participant–punisher

edge. This results in bi-stability between the two states, just as between the defector and the

punisher state. However, for small δ and/or weak selection, punishers can still relatively easily

invade non-participant populations and reach the critical threshold through random drift. In this

case the general conclusions of the main text remain unaffected (Fig. 5).
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Figure 4: Effects of second order free-riding (α > 0) in simulations as compared to the analytical

results that are independent of α. (a) For mild punishment of non-punishing cooperators, α =

0.1, the result is essentially indistinguishable from the case α = 0 (c.f. Fig. 1a). (b) Equal

punishment of cooperators and defectors, α = 1, strengthens the position of punishers and

the system spends even more time in the punisher state. However, punishers can invade less

easily. Parameters: N = 5, r = 3, σ = 1, γ = 0.3, β = 1, δ = 0,M = 100, µ = 0.01, smax = 0.384;

a α = 0.1; b α = 1.

For small δ and strong selection, the systems generally spends > 60% in the punisher state

and the defector state is suppressed to levels < 10% (Fig. 5a). Similarly, punishers dominate for

large δ and weak selection (Fig. 5b). However, for large δ and strong selection the bi-stability

essentially prevents transitions from the non-participant state to the punisher state or vice versa.

Thus, punishment can only be established by invading cooperators through random drift. As

a consequence, the system spends more time in the cooperator state and less in the punisher

state. Quite intriguingly, punishment of non-participants does not diminish their success but,

in fact, actually increases the time in the non-participant state. Nevertheless, even for large δ

and strong selection punishers dominate with 40% and the systems spends roughly equal times

cooperator and non-participant state with around 25% each, leaving merely 10% for defectors.

Interestingly, such strict social coercion maintains close to 60% cooperation in total (cooperators

9



cooperators x defectors y non-participants z punishers w
b

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

selection strength s

M = 100
re

la
tiv

e 
tim

e 
in

 h
om

og
en

eo
us

 s
ta

te
s

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

selection strength s

a
M = 100

Figure 5: Effects of social coercion by punishing non-participants. (a) For mild measures

against non-participants, the outcome is barely affected: punishers dominate (c.f. Fig. 1a).

(b) In contrast, heavy measures against non-participants tend to undermine the success of

punishment and actually result in an increase of cooperators and non-participants while leav-

ing the frequency of defectors largely unaffected. Parameters: N = 5, r = 3, σ = 1, γ = 1, β =

2, α = 0,M = 100; a δ = 0.1, smax = 0.151; b δ = 1, smax = 0.125.

plus punishers), whereas the scenario with purely voluntary participation (δ = 0) results in more

than 80% cooperation (c.f. Fig. 1a). Hence the system responds to coercion by actually reducing

the readiness to cooperate.
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